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A molecular dynamic(MD) code is used to calculate the inverse bremsstrahlung(IB) heating rates of a
plasma as a function of density and laser intensity. The code belongs to the class of particle-particle-particle-
mesh codes. Since the equations solved by the MD code are fundamental, this approach avoids several
assumptions which are inherent to alternative methods, for example those which employ a Coulomb logarithm,
and is not restricted to weakly coupled plasmas. The results of the MD code are compared to previously
published results for plasmas of low coupling. The results of calculations for dense, moderately coupled
plasmas are also presented. An analytic expression for the IB heating rate, based on a fit to the rates calculated
by the MD code, is suggested. This expression includes terms nonlinear in the plasma density.

DOI: 10.1103/PhysRevE.70.056411 PACS number(s): 52.50.Jm, 52.65.Yy, 52.38.Dx, 52.27.Gr

I. INTRODUCTION

The question of the rate of energy conversion between a
plasma and a laser field is of major importance to nearly
every application arising from the interaction of high-
intensity laser radiation with matter. A key heating process in
such interactions is inverse-bremsstrahlung(IB) heating. As
is known from basic electrodynamics[1], every accelerated
charge emits electromagnetic radiation, so called bremsstrah-
lung. The inverse of this effect, absorption of photons by
charges undergoing collisions, is called inverse bremsstrah-
lung. There have been a range of calculations of the IB-
heating rate, some of the more important being Schlessinger
and Wright[2] in 1979, Polishchuk and Meyer-Ter-Vehn[3]
in 1994, and Pert[4] in 1995. Calculations have been per-
formed using the classical as well as the quantum approach,
with general agreement within the valid parameter space.

All these calculations incorporate a major assumption.
The energy absorption is calculated assuming a collision of
two particles of opposite charge in the external electro-
magnetic field. The momentum transfer resulting from this
collision is then integrated over the phase of the electro-
magnetic wave and over the velocity distribution of the
plasma to yield the final heating rate. Since the cross section
of a binary Coulomb collision diverges due to the long range
effect of the Coulomb force(in the classical as well as in
the quantum picture) a cutoff has to be introduced, which
results in the so-called Coulomb logarithm, which is gener-
ally of the form lnL=lnsbmax/bmind [4,5]. The long-range
cutoff bmax is related to the Debye length of a plasma
lD=Îe0Te/e2ne in which Te is the electron temperature in J,
e the elementary charge, andne the electron density in m−3.
The short-range cutoffbmin is related to the deBroglie wave-
lengthldeBroglie=h/Î3mTe and the classical distance of clos-
est approache2/ s4pe0mv2d, where m is the electron mass
andv the electron speed.

The restriction to two-particle collisions and the concept
of an outer cutoff are certainly valid for weakly coupled
plasmas. In this regime, the cross section for collisions with
three or more particles can be neglected and the number of

particles in the Debye sphere is large enough to give statis-
tically meaningful shielding. However, many plasmas of cur-
rent interest to laser-plasma interactions are not weakly
coupled[6–10]. Further, even for moderately coupled plas-
mas where the number of particles in the Debye sphere,

NDebye=
4p

3
S e0Te

e2 D3/2 1
Îne

, s1d

is of order unity (i.e., ,10), these assumptions should be
treated with caution. In such cases it is impossible to solve
the problem analytically and one has to revert to extensive
numerical calculations. We note that the requirementNDebye
@1 is equivalent toG=e2/ se0lDTd!1, where G is the
plasma coupling parameter. Therefore weakly coupled plas-
mas are described by a large numberNDebye and strongly
coupled plasmas are described by a small numberNDebye.

In this paper a classical, nonrelativistic molecular dy-
namic (MD) calculation to investigate IB-heating rates is
presented. The molecular dynamic approach has the advan-
tage of being derived from a more fundamental set of equa-
tions, with fewer assumptions. One does not need to define a
Coulomb logarithm and collisions are inherently treated as
many-particle collisions; all that is needed for the nonrelativ-
istic calculation are the electrostatic Maxwell equations and
Newton’s equations of motion. Consequently, MD calcula-
tions can be employed for plasma conditions under which
alternative approaches lead to significant errors, as well as
providing a reliable test for faster approximations. The major
disadvantage of this method is its speed. Since every particle
has to be treated individually, and a large number of particles
is needed to reach statistically meaningful results, MD codes
are slow compared to other approaches. It is therefore of
particular importance to use algorithms where the number of
steps is a low-order function of the number of particles.

The paper is organized as follows. In Sec. II the particle-
particle-particle-meshsP3Md method, which underlies our
MD code, is described and our implementation of the MD
approach is outlined. In Sec. III the results of calculations of
the IB heating rate for several plasmas, with a range of cou-
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pling constants, are described. Where possible the results are
compared with those of earlier calculations. In Sec. IV we
discuss the results and suggest an analytic expression for the
heating rate found from a fit to the results of the MD calcu-
lations. Finally in Sec. V we conclude.

II. MOLECUAR DYNAMIC CALCULATION

P3M method

Solving the individual force equations for each of theN
particles in a system would requireN2/2 individual force
calculations to be undertaken every integration time step.
Since the time resolution has to be very high to ensure that
even the hardest collisions are treated correctly, a single time
step has to be very short. Overall this would result in a cal-
culation that would last several months for 23104 particles.
A large reduction in the number of calculations required can
be achieved by employing the particle-particle-particle-mesh
sP3Md method described by Hockney and Eastwood[11]. In
this method the force on a particle is divided into a collec-
tive, long-range term from the majority of the particles
(particle-mesh); and a short range term by the particles close
to the particle in question(particle-particle). Using this gen-
eral idea, we chose to calculate the long range effects by
solving the Poisson equation on a mesh, and treating the
short-range effects by direct integration of the Coulomb
force. The calculations were performed on a 2.4-GHz per-
sonal computer and took on average three days for one data
point.

A similar approach has recently been used by the authors
[12] to calculate the equilibration rate of a non-Maxwellian
electron energy distribution. Other recent molecular dynamic
calculations have been performed by Batishchevet al. [13]
and Gibbon[14]. Both of these are based on tree algorithms,
using massively parallel computers. Batishchev has used the
MD approach for calculating IB heating, but only treats
weakly coupled plasmas. The simulations undertaken by
Gibbon were focused on transport rather than IB heating.

1. Particle-mesh

In our code the coordinate space is a three-dimensional
(3D) cube, represented by a 163-point grid. The boundary
conditions are chosen to be periodic. The long-range effects
are then treated by solving the Poisson equation on the mesh
with a fast Fourier transform(FFT) [15]. For each particle
the complete charge was assigned to the closest grid point
[16].

The system of differential equations to be solved is

DFsxWd = −
rsxWd
e0

, s2d

EW psxWd = − ¹W F, s3d

m
dṽ
dt

= qfEW psxWd + EW Lg, s4d

wherem is the electron mass,q the electron charge,F the

electrostatic potential,EW p the electric field due to the par-

ticles, EW L the external laser field, andr the charge density.

The laser fieldEW L was assumed to be independent ofxW since
the length of the simulated cube(i.e., 0.043mm for n
=1020 cm−3) is small compared to the laser wavelength
s1.06mmd. Note that the size of the cube is still large com-
pared to the Debye length.

Equation (2) is then solved using two FFT’s[15]. The
calculation time for a FFT is proportional toNcell ln Ncell,
whereNcell is the number of cells. Provided that the number
of cells is less than the number of particlesN, the time to
calculate the FFT is very much shorter than that required to
solve theN2/2 force equations. A more detailed discussion
on the particle-mesh calculation can be found in our earlier
work on energy equilibration in plasmas[12].

2. Particle-particle

We chose to use 8000 electrons and 8000 ions for our
calculation. With a 163-point grid this results in roughly four
particles per cell. Each particle responds to a driving electro-
magnetic wave, and interacts directly with every particle in
its own cell or in one of the 26 neighboring cells. This
roughly means that every particle interacts directly with its
100 closest neighbors. It interacts with the remaining 15 900
via the grid. At this point one should note that, for the plas-
mas of interest to this paper, the number of directly inte-
grated interactions far exceeds the number of particles in the
Debye sphere, thereby ensuring that there is no artificial cut-
off due to the grid. It is very important to allow every par-
ticle to interact not only with particles in its own cell, but
also with every particle from a neighboring cell: If that was
not the case, one could suddenly have one particle crossing
the boundary of a cell and appearing right next to another
particle that happens to be close to the boundary without
ever having felt the close range force between them up to
this point. In addition, numerical errors due to calculations
on a finite grid are reduced. Since the force scales as 1/r2, so
do the numerical errors arising from the discreteness of the
mesh. By including the neighboring cells in the direct inte-
gration, the minimum distance for particle-mesh interaction
is now 2 instead of 1, thereby reducing errors by a factor of
up to 4.

The integration of the particle-particle interaction is per-
formed by a simple Verlet algorithm[16–20]. Typically an
oscillation of the electromagnetic wave was resolved in 2
3105 time steps, which for 1.06-mm wavelength results in a
single time step ofdt<1.8310−20 sec. This very short time
step is needed to correctly resolve the hardest encounters
between particles.

3. Divergence of the Coulomb field and the inner cutoff

Any numerical calculation working with a finite time step
is subject to numerical errors. These errors can generally be
made sufficiently small by choosing a small enough time
step. Yet, this turns out to be slightly problematic for the case
of an attractive Coulomb collision, since the field tends to
infinity for distances approaching zero. Even for very small
time steps there is still a chance that two particles are so
close to each other at some point in the calculation that the
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time step is then incapable of resolving the motion. This can
result in unphysical momentum transfers that violate energy
conservation.

To avoid this, a numerical cutoff was introduced, so that
the force between two particles could not exceed a certain
value. If two particles were within this cutoff the magnitude
of the interaction force was set to the value at cutoff distance.
The majority of the calculations was performed with an inner
cutoff set toa0/20, wherea0 is the Bohr radius. For the
plasmas calculated in this paper this is significantly less than
the deBroglie wavelength. We emphazise, however, that this
is a purely numerical cutoff and it is not to be mistaken with
a physical cutoff: the value of the numerical cutoff may be
changed, within sensible limits, with essentially no change in
the calculated results.

To ensure that our numerical cutoff did not introduce un-
physical effects, the program was run several times with dif-
ferent values for the cutoff. It was found that if the cutoff
was too large the heating rate decreased, as expected, since a
significant number of very hard collisions are artificially re-
duced in strength. However, smaller cutoffs showed conver-
gence within the expected numercial errors, and hence we
conclude that the cutoff successfully stabilizes the numerics
without interfering with the physics we are trying to observe.

The physical cutoff that very often appears in this context,
namely the inner cutoff of the Coulomb logarithm, is unre-
lated to this numerical cutoff. We note that the inner cutoff of
the Coulomb logarithmbmin is related to the deBroglie wave-
length of the electron and/or the classical distance of closest
approach. The latter is innately incorporated in any MD cal-
culation. The former is not needed in a classical calculation
that treats electrons as well as ions as pointlike particles,
since the differential scattering cross sectionds /dV for the
two-particle collision is exactly the same for the unshielded
classical two-body collision as for the exact quantum me-
chanical calculation[20]. Therefore, one could argue that
any classical calculation that artificially introduces an inner
cutoff related to the deBroglie wavelength should be treated
with caution.

III. CALCULATIONS

Most important to every molecular dynamic calculation is
the right choice of the initial distribution of particles over
velocity and position. This is slightly problematic since there
is no analytical solution for this distribution of electrons and
ions for moderately coupled plasmas. Even though the
plasma density is homogenous on a large scale, it certainly is
not on a small scale. The well known effect of Debye shield-
ing for example, leads to local inhomogeneity, as described
by the two-particle correlation function. These, and higher
order effects, will play a role in moderately coupled plasmas.
The only way to create an initial distribution is to start the
program with some initial distribution and then run the pro-
gram in the absence of any applied field to let it equilibrate.
Of course one should choose the initial distribution as close
to the final one as possible, to ensure a short equilibration
time.

For the calculations presented in this paper, this was done
the following way. As a start, the ions were put into the box

completely randomly. Then the electrons were put in using a
random number procedure with the modification that on av-
erage an electron was 1/Î3 closer to its nearest ion than it
was to its nearest electron. This was done to resemble the
shielded distribution. Then a simple velocity scaling algo-
rithm was used to create the velocity distribution. In detail
this means that initially both the electrons and the ions were
given a Maxwellian distribution of velocities according to
the desired temperature. In the next step, the program was
run for a certain time, during which there would generally be
a relaxation between the kinetic energy and the potential en-
ergy, according to whether one or the other was too high or
too low relative to the equlibrium distribution. The kinetic
energy was then renormalized to the desired temperature,
and the program rerun. This was done several times until the
kinetic energy was stable within the expected numeric error.

The heating rate was determined by running the calcula-
tions for four cycles of the laser field, calculating the in-
crease in the mean energy of the plasma, and hence deducing
the rate of increase of electron temperature. Since the rate of
IB heating is relatively insensitive to the temperature of the
plasma, the small change in temperatureDTe is accurately
given byDTe=RDt, whereR is the heating rate at the initial
plasma temperature, andDt is the interval over which the
heating is calculated.

Results

Since the number of particles used is not very large
(16 000) statistical fluctuations will still be observable. To
get an idea of the magnitude of these fluctuations, two dif-
ferent initial distributions were equilibrated and tested
against each other.

In addition, several calculations were done to test the nu-
merics of the code. They included changing the integration
time step, changing the numerical inner cutoff and testing for
energy conservation in the zero-field case. All these tests
were successful. The combined numerical and statistical er-
rors were within a 5% range.

The code was then tested against calculations by earlier
authors, namely, Polishchuk and Meyer-ter-Vehn[3] and Pert
[4]. These two were chosen because they combine between
them a range of earlier approaches and contain comparable
data.

The formula derived by Polishchuk and Meyer-ter-Vehn
[3] is

R=
dTe

dt
=

8nie
4Z2vE

2

3ms4pe0d2svE
2 + ve

2d3/2 ln L s5d

with

ln L =
1

4
ln2f1 + jg + lnFj + expS1

3
Îp/2DG lnF Te

"v
G

and

j =
mvE

2

Te
.

Herev is the frequency of the laser field,ni the ion den-
sity in m−3, vE= ueEu /mv the electron quiver velocity,E
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=Î2cm0I is the amplitude of the electric field, whereI is the
intensity of the linearly polarized radiation,ve=ÎTe/m the
thermal speed, andZ is the ion charge number. In our case
Z=1.

The first example plasma is the one chosen by Pert[4]: an
electron density ofne=1020 cm−3 and an initial temperature
of Te=10 eV. The plasma is heated by radiation of wave-
length 1.06mm, corresponding to the Nd:YAG laser transi-
tion. For this plasmaNDebye<5, a moderately coupled
plasma.

Figure 1 compares the rate of increase of electron tem-
perature,R calculated by the MD code with the calculations
by Polishchuk and Meyer-ter-Vehn and those by Pert.

It is clear that all three calculations give heating curves of
the same form, and are in good quantitative agreement at low
intensities. However, the calculated heating rates vary by a
factor of up to 2 in the region1

2mvE
2 *Te. For a 10-eV

plasma this corresponds to an intensity ofI <4.8
31013 W/cm2. In detail, the heating rate derived by Pert[4]
is in good agreement with our calculation in the limit of high
intensity, but the peak heating rate occurs at higher intensi-
ties than either that of Polishchuk and Meyer-ter-Vehn[3] or
that of the MD calculation. The heating rate calculated by
Polishchuk and Meyer-ter-Vehn is lower than the rate calcu-
lated by our code for all intensities with12mvE

2 *Te.
The difference between the two earlier calculations[3,4]

is largely due to a difference in the form of the term resem-
bling the Coulomb logarithm. This also shows one of the
weaknesses of those methods; since this term cannot be de-
rived from basic principles there is always a certain amount
of arbitrariness associated with it.

One of the key features of all earlier calculations is a
linear dependance of the heating rate on the plasma density.
However, if three-body collisions(or collisions with even
more particles) play a significant role, there should be higher
order terms in the densityn. To investigate this, the heating
of a 10-eV plasma with an electron density ofne
=1019 cm−3 was calculated. Figure 2 compares the heating
rate calculated by the MD code forne=1019 cm−3 with the
calculated rates shown in Fig. 1 divided by 10. The rates

calculated by Polishchuk and Meyer-ter-Vehn and the equa-
tion suggested in Sec. IV are also shown.

It can be seen that the scaled rates are close to the directly
calculated rates. The heating rates do appear to be just
slightly lower than in thene=1019-cm−3 case, but the differ-
ence is still inside the error and fluctuation range. This sug-
gests that a density ofne=1020 cm−3 is low enough to neglect
multiple s.2d particle collisions.

To determine at what density nonlinear effects become
significant, the IB heating rate was calculated for two high
density plasmas. Figure 3 shows calculated rates for an ini-
tial temperature ofTe=10 eV and density ofne=ni =5
31020 cm−3. For these conditionsNDebye<2.5. Since this
coupling is so strong the simulation for Fig. 3 was run with
an even shorter time step ofDt<6310−21 s. Figure 4 shows
the calculated heating rates for a plasma with initial tempera-
ture Te=20 eV and densityni =831020 cm−3. In this case
NDebye<5.5.

It can be seen that the heating rate decreases relative to
the heating rate calculated by Polishchuk and Meyer-ter-
Vehn. This becomes especially obvious in the case where
ni =831020 cm−3 and the intensity is 1014 W/cm2. Here the
MD heating rate is significantly less than the Polishchuk and
Meyer-ter-Vehn result. This is a sign of a contribution that is

FIG. 1. Comparison of the heating rateR calculated for a plasma
with initial valuesne=1020 cm−3, Te=10 eV by the formula of Pol-
ishchuk and Meyer-ter-Vehn(dashed line) [Eq. (5)], Pert(squares),
and the MD code(stars). The solid line shows the heating rate given
by the analytic expression suggested in Sec. IV.

FIG. 2. Comparison of the heating rateR calculated for a plasma
with initial valuesne=1019 cm−3, Te=10 eV by the formula of Pol-
ishchuk and Meyer-ter-Vehn(dashed line) [Eq. (5)], the MD code
(stars), dividing the rates calculated in Fig. 1 by 10(diamonds). The
solid line shows the heating rate given by the analytic expression
suggested in Sec. IV.

FIG. 3. Comparison of the heating rateR calculated for a plasma
with initial valuesni =531020 cm−3, Te=10 eV by the formula of
Polishchuk and Meyer-ter-Vehn(dashed line) [Eq. (5)] and the MD
code (stars). The solid line shows the heating rate given by the
analytic expression suggested in Sec. IV.
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nonlinear in the plasma density. This point is discussed in
more detail in Sec. IV.

The final plasma for which the heating rate was calculated
was one with an initial temperature ofTe=5 eV and a density
of ni =1019 cm−3. This plasma is of interest, since most pre-
vious derivations for IB heating rates are not valid for low
temperatures. For example, the heating rate calculated by
Polishchuk and Meyer-ter-Vehn is only valid forTe@"v.
For the l=1.06-mm radiation considered here,"v
=1.16 eV, and so this condition is not met.

Figure 5 compares the heating rate calculated for this
plasma by the MD code with that calculated by the expres-
sion due to Polishchuk and Meyer-ter-Vehn. It is clear that
the rate calculated by Polishchuk and Meyer-ter-Vehn under-
estimates the heating rates in this case. This is largely due the
factor in the final term of the Coulomb logarithm, lnfTe/"vg,
which obviously breaks down for low temperatures.

IV. DISCUSSION

After comparing earlier results to the MD calculation it
appears that two critical things are responsible for the differ-
ences: the exact choice of the Coulomb logarithm, and the
restriction to two-particle collisions. Since the MD calcula-
tion is very slow, and therefore impractical for everyday ap-

plication, we suggest a modified version of the IB-heating
formula from Polishchuk and Meyer-ter-Vehn[3] that fits the
MD data.

We chose to fit an analytical expression that resembles the
result of Polishchuk and Meyer-ter-Vehn:

R=
dTe

dt
=

8e4Z2vE
2

3ms4pe0d2svE
2 + ve

2d3/2asnid ln L s6d

with

asnid = C1niS1 −
ni

C2
D s7d

and

ln L = lnFC3j + C4j2 + C5j3 + expS1

3
Îp/2DG

3 lnFexps1d +
Te

"v
G ,

where

j =
mvE

2

Te
.

The rationale for the modifications to the expression de-
rived by Polishchuk and Meyer-ter-Vehn is as follows. In the
expression for the Coulomb logarithm the term lnfTe/"vg
was modified to lnfexps1d+Te/"vg to stablilize this term
when Te."v. In the limit of low electron temperatures
this term now tends to unity. The remaining terms inj were
then replaced by a power series inj up to j3. The term
exps 1

3
Îp /2d was kept to ensure convergence of the two

formulas in the low field limit where the results of the
MD calculations are in good agreement with the formula
due to Polishchuk and Meyer-ter-Vehn. The effect of mul-
tiple particle collisions was accounted for by replacing the
linear dependance on density by a term of the formasnid
=C1nis1−ni /C2d.

The constantsC1,C2,C3,C4,C5 were then determined by
numerically fitting the best curve to all the heating rates cal-
culated by the MD code presented in Figs. 1–5.

It was found that the best fit was achieved for

C1 = 1.089,

C2 = 2.2113 1027 m−3,

C3 = 1.042,

C4 = − 0.233,

C5 = 0.139.

It should be noted that the constantsC1 andC3 are both
close to unity such that our suggested formula agrees closely
with that of Polishchuk and Meyer-ter-Vehn in the limits of
low intensity and low density.

In order to demonstrate the non-linear dependance of the
heating rate on the plasma density, Fig. 6 shows the MD

FIG. 4. Comparison of the heating rateR calculated for a plasma
with initial valuesni =831020 cm−3, Te=20 eV by the formula of
Polishchuk and Meyer-ter-Vehn(dashed line) [Eq. (5)] and the MD
code (stars). The solid line shows the heating rate given by the
analytic expression suggested in Sec. IV.

FIG. 5. Comparison of the heating rateR calculated for a plasma
with initial valuesne=1019 cm−3, Te=5 eV by the formula of Pol-
ishchuk and Meyer-ter-Vehn(dashed line) [Eq. (5)] and the MD
code (stars). The solid line shows the heating rate given by the
analytic expression suggested in Sec. IV.
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heating rate divided by the right hand side of Eq.(6), but
with asnid set to unity. This procedure yields deduced values
for asnid which can be compared to Eq.(7) with and without
the nonlinear term. It is clear thatasnid, and hence the heat-
ing rate, increases sublinearly with the plasma density. The
deduced value ofC2=2.21131021 cm−3 shows that the heat-
ing will vary nonlinearly with plasma density for plasmas
with densities greater than<531020 cm−3. The nonlinear
dependance of the heating rate on plasma density is likely to
be caused by the increasing importance of three-(and more)
body collisions at high density.

V. CONCLUSION

In summary, we have described a molecular dynamic code
for calculating the rate of inverse bremsstrahlung heating of
a plasma.

The results of calculations of the IB heating rate as a
function of laser intensity were presented for a range of
plasma conditions. It was shown that the MD code is in
qualitative agreement with ealier work, but differing in de-
tails by factors of up to 2 depending on the plasma condi-
tions.

The results of the MD code suggest that the heating rate
increases lower than linearly for plasma densities greater
than approximately 531020 cm−3.

Finally an analytic expression was fitted to the results of
the MD calculations to yield a formula for the heating rate
that could be incorporated into larger plasma codes.

ACKNOWLEDGMENTS

The authors would like to acknowledge helpful discus-
sions of this problem with Professor S. J. Rose and Professor
J. S. Wark. S.M.H. is grateful to the Royal Society for finan-
cial support, and N.D. to the Rhodes Trust for financial
support.

[1] J.D. Jackson,Classical Electrodynamics(Wiley, New York,
1998).

[2] L. Schlessinger and J. Wright, Phys. Rev. A20, 1934(1979).
[3] A. Y. Polishchuk and J. Meyer-Ter-Vehn, Phys. Rev. E49, 663

(1994).
[4] G. J. Pertet al., Phys. Rev. E51, 4778(1995).
[5] D. O. Gerickeet al., Phys. Rev. E65, 036418(2002).
[6] D. J. Spenceet al., J. Opt. Soc. Am. B20, 138 (2003).
[7] A. Butler et al., Phys. Rev. Lett.89, 185003(2002).
[8] D. J. Spenceet al., J. Phys. B34, 4103(2001).
[9] G. J. Pert, J. Phys. B32, 27 (1999).

[10] G. J. Pert, J. Phys. B34, 881 (2001).
[11] R. Hockney and J. Eastwood,Computersimulations using Par-

ticles (McGraw-Hill, New York, 1981).
[12] N. David and S. M. Hooker, Phys. Rev. E68, 056401(2003).

[13] O.V. Batishchevet al., 30th EPS Conference on Controlled
Fusion and Plasma Physics, St. Petersburg ECA 2003, Vol.
27A, Sec. 3.72(unpublished).

[14] P. Gibbonet al., Phys. Plasmas11, 4032(2004).
[15] W. H. Presset al., Numerical Recipes in C(Cambridge Uni-

versity Press, Cambridge, England, 1992).
[16] C. K. Birdsall and A. B. Langdon,Plasma Physics via Com-

puter Simulation(IOP, New York, 1995).
[17] H. J. Kull, Computersimulation von Plasmen, Skriptum zur

Vorlesung(RWTH Aachen, Aachen, 2001).
[18] F. John,Partial Differential Equations(Springer, New York,

1978).
[19] W. Ames,Numerical Methods for Partial Differential Equa-

tions (Academic, New York, 1992).
[20] E. Merzbacher,Quantum Mechanics(Wiley, New York, 1998).

FIG. 6. Values ofasnid deduced by dividing the MD heating rate
by the rate calculated by Eq.(6), but with asnid set to unity
(crosses). These values may be compared with Eq.(7) calculated
with C2→` (dashed line) and the fitted value ofC2=2.211
31027 m−3 (solid line).

DAVID, SPENCE, AND HOOKER PHYSICAL REVIEW E70, 056411(2004)

056411-6


