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Molecular-dynamic calculation of the inverse-bremsstrahlung heating
of non-weakly-coupled plasmas
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A molecular dynamiqMD) code is used to calculate the inverse bremsstrah{iBig heating rates of a

plasma as a function of density and laser intensity. The code belongs to the class of particle-particle-particle-
mesh codes. Since the equations solved by the MD code are fundamental, this approach avoids several
assumptions which are inherent to alternative methods, for example those which employ a Coulomb logarithm,
and is not restricted to weakly coupled plasmas. The results of the MD code are compared to previously
published results for plasmas of low coupling. The results of calculations for dense, moderately coupled
plasmas are also presented. An analytic expression for the IB heating rate, based on a fit to the rates calculated
by the MD code, is suggested. This expression includes terms nonlinear in the plasma density.
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I. INTRODUCTION particles in the Debye sphere is large enough to give statis-

The question of the rate of energy conversion between Hcally_ meaningful shielding. Hovyever, many plasmas of cur-
plasma and a laser field is of major importance to nearl)fem interest to laser-plasma interactions are not weakly
every application arising from the interaction of high- coupled[6-10. Further, even for moderately coupled plas-

intensity laser radiation with matter. A key heating process ifnas where the number of particles in the Debye sphere,

such interactions is inverse-bremsstrahlytg) heating. As 4 €T\ 1
is known from basic electrodynami¢g], every accelerated Npebye= ?<?e> -, (1)
charge emits electromagnetic radiation, so called bremsstrah- \Ne

lung. The inverse of this effect, absorption of photons by of grder unity(i.e., <10), these assumptions should be
charges undergoing collisions, is called inverse bremsstralize e with caution. In such cases it is impossible to solve
lung. There have been a range of calculations of the 1Byhe nronlem analytically and one has to revert to extensive
heatmg. rate, some of the more important being Schlessingey,,merical calculations. We note that the requiren My e
gnd Wright[2] in 1975_), Polishchuk and. Meyer-Ter-VeliB >1 is equivalent tol'=e?/(e\pT)<1, whereT is the
in 1994, a_nd Perd] |n_1995. Calculations have been per- lasma coupling parameter. Therefore weakly coupled plas-
fo_rmed using the classmal_ as well as Fhe quantum approach, o . described by a large nUMD&y., and strongly
with general agreement within the valid parameter space. coupled plasmas are described by a sn?a)I/F nuMbgg

All these calcula_tlon_s Incorporate a major assumption. ;g paper a classical, nonrelativistic moleciljelar dy-
The energy absorption is calculated assuming a collision of _ ..« (MD) calculation to investigate IB-heating rates is

two paf“c'.es of opposite charge in the extgrnal eIeCtr(.)'presented. The molecular dynamic approach has the advan-
magnetic field. The momentum transfer resulting from th'Stage of being derived from a more fundamental set of equa-
collision is then integrated over the phase of the electrogi, g it fewer assumptions. One does not need to define a

n?agnetltc vv.a;/(;atr?n(f:i. Orﬁr tthe ve![ocnsy dlsttr;]buuon of tr:.eCoqumb logarithm and collisions are inherently treated as
plasma to yie € final healing raté. since the Cross sec IO|'?1any-particle collisions; all that is needed for the nonrelativ-

of a binary Coulomb collision diverges due to the long raNY8stic calculation are the electrostatic Maxwell equations and

effect of the C(_)ulomb forcein the classi_cal as well as N Newton's equations of motion. Consequently, MD calcula-
the guantum pictupea cutoff has to be_ mtrodugedz which tions can be employed for plasma conditions under which
results in the so-called Coulomb logarithm, which is 9eneralternative approaches lead to significant errors, as well as
ally of the f_orm INA =In(Bmax/ Brmin) [4,5]. The long-range providing a reliable test for faster approximations. The major
cutoff bmax is related to the Debye length of a plasma gisadvantage of this method is its speed. Since every particle
A\p=1€gTe/€°ne in Which T, is the electron temperature in J, has to be treated individually, and a large number of particles
e the elementary charge, amg the electron density in M. js needed to reach statistically meaningful results, MD codes
The short-range cutoff,,,, is related to the deBroglie wave- are slow compared to other approaches. It is therefore of
length N gegrogie=h/ \m and the classical distance of clos- particular importance to use algorithms where the number of
est approacte?/ (4meymuv?), wherem is the electron mass steps is a low-order function of the number of particles.
andv the electron speed. The paper is organized as follows. In Sec. Il the particle-
The restriction to two-particle collisions and the conceptparticle-particle-mest{P®M) method, which underlies our

of an outer cutoff are certainly valid for weakly coupled MD code, is described and our implementation of the MD
plasmas. In this regime, the cross section for collisions witrepproach is outlined. In Sec. Ill the results of calculations of
three or more particles can be neglected and the number tifie IB heating rate for several plasmas, with a range of cou-
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pling constants, are described. Where possible the results ajigjes. |§L the external laser field, and the charge density.

compared with those of earlier calculations. In Sec. IV Weri o laser field: was assumed to be independenkaince
discuss the results and suggest an analytic expression for tlag L

: . e length of the simulated cubg.e., 0.043um for n
hegtmg rgte fognd from a fit to the results of the MD calcu—zloz() cm3) is small compared to the laser wavelength
lations. Finally in Sec. V we conclude.

(1.06 um). Note that the size of the cube is still large com-

Il. MOLECUAR DYNAMIC CALCULATION pared to the Debye length.

3 Equation(2) is then solved using two FFTEL5]. The

P*M method calculation time for a FFT is proportional ey In Negp,

Solving the individual force equations for each of tke whereNg is the number of cells. Provided that the number

particles in a system would requitd?/2 individual force  of cells is less than the number of partichds the time to

calculations to be undertaken every integration time stepcalculate the FFT is very much shorter than that required to

Since the time resolution has to be very high to ensure thegolve theN?/2 force equations. A more detailed discussion

even the hardest collisions are treated correctly, a single timen the particle-mesh calculation can be found in our earlier

step has to be very short. Overall this would result in a calwork on energy equilibration in plasm§s2].

culation that would last several months fox20* particles.

A large reduction in the number of calculations required can 2. Particle-particle

be achieved by emp!oying the particle-particle-particle-mesh \ye chose to use 8000 electrons and 8000 ions for our
(P°M) method described by Hockney and Eastw@dll. In  cajculation. With a 1&point grid this results in roughly four
this method the force on a particle is divided into a collec-particles per cell. Each particle responds to a driving electro-
tive, long-range term from the majority of the particles magnetic wave, and interacts directly with every particle in
(particle-meshy and a short range term by the particles closejits own cell or in one of the 26 neighboring cells. This
to the particle in questioparticle-particlg. Using this gen-  roughly means that every particle interacts directly with its
eral idea, we chose to calculate the long range effects byoo closest neighbors. It interacts with the remaining 15 900
solving the Poisson equation on a mesh, and treating thgia the grid. At this point one should note that, for the plas-
short-range effects by direct integration of the Coulombmas of interest to this paper, the number of directly inte-
force. The calculations were performed on a 2.4-GHz pergrated interactions far exceeds the number of particles in the
sonal computer and took on average three days for one dafgehye sphere, thereby ensuring that there is no artificial cut-
point. off due to the grid. It is very important to allow every par-
A similar approach has recently been used by the authorgcle to interact not only with particles in its own cell, but
[12] to calculate the equilibration rate of a non-Maxwellian giso with every particle from a neighboring cell: If that was
electron energy distribution. Other recent molecular dynamigot the case, one could suddenly have one particle crossing
calculations have been performed by Batishckewl. [13]  the boundary of a cell and appearing right next to another
and Gibbor[14]. Both of these are based on tree algorithms particle that happens to be close to the boundary without
using massively parallel computers. Batishchev has used th&er having felt the close range force between them up to
MD approach for calculating IB heating, but only treats thjs point. In addition, numerical errors due to calculations
weakly coupled plasmas. The simulations undertaken byn g finite grid are reduced. Since the force scales g% 46
Gibbon were focused on transport rather than IB heating. do the numerical errors arising from the discreteness of the
mesh. By including the neighboring cells in the direct inte-
) _ ) ) ration, the minimum distance for particle-mesh interaction
In our code the coordinate space is a three-dimensionas now 2 instead of 1, thereby reducing errors by a factor of
(3D) cube, represented by a ®point grid. The boundary up to 4.
conditions are chosen to be periodic. The long-range effects’ The integration of the particle-particle interaction is per-
are then treated by solving the Poisson equation on the meshrmed by a simple Verlet algorithril6-2g. Typically an
with a fast Fourier transforni=FT) [15]. For each particle oscillation of the electromagnetic wave was resolved in 2
the complete charge was assigned to the closest grid point 1¢f time steps, which for 1.0gm wavelength results in a

1. Particle-mesh

(16]. _ _ _ . single time step ofit~1.8x 1072° sec. This very short time
The system of differential equations to be solved is step is needed to correctly resolve the hardest encounters
between particles.
X
ab@=-22, @
€ 3. Divergence of the Coulomb field and the inner cutoff

- - Any numerical calculation working with a finite time step

Ep(X)=-V, ) is subject to numerical errors. These errors can generally be

made sufficiently small by choosing a small enough time

v - - step. Yet, this turns out to be slightly problematic for the case

ma =0[Ep(®) +E., 4 of an attractive Coulomb collision, since the field tends to

infinity for distances approaching zero. Even for very small

wherem is the electron masg the electron chargep the  time steps there is still a chance that two particles are so
electrostatic potential, the electric field due to the par- close to each other at some point in the calculation that the
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time step is then incapable of resolving the motion. This cartompletely randomly. Then the electrons were put in using a
result in unphysical momentum transfers that violate energyandom number procedure with the modification that on av-
conservation. erage an electron was {13 closer to its nearest ion than it
To avoid this, a numerical cutoff was introduced, so thatwas to its nearest electron. This was done to resemble the
the force between two particles could not exceed a certaishielded distribution. Then a simple velocity scaling algo-
value. If two particles were within this cutoff the magnitude rithm was used to create the velocity distribution. In detall
of the interaction force was set to the value at cutoff distancethis means that initially both the electrons and the ions were
The majority of the calculations was performed with an innergiven a Maxwellian distribution of velocities according to
cutoff set toay/20, whereay is the Bohr radius. For the the desired temperature. In the next step, the program was
plasmas calculated in this paper this is significantly less tharun for a certain time, during which there would generally be
the deBroglie wavelength. We emphazise, however, that thia relaxation between the kinetic energy and the potential en-
is a purely numerical cutoff and it is not to be mistaken withergy, according to whether one or the other was too high or
a physical cutoff: the value of the numerical cutoff may betoo low relative to the equlibrium distribution. The kinetic
changed, within sensible limits, with essentially no change irenergy was then renormalized to the desired temperature,
the calculated results. and the program rerun. This was done several times until the
To ensure that our numerical cutoff did not introduce un-kinetic energy was stable within the expected numeric error.
physical effects, the program was run several times with dif- The heating rate was determined by running the calcula-
ferent values for the cutoff. It was found that if the cutoff tions for four cycles of the laser field, calculating the in-
was too large the heating rate decreased, as expected, sinceraase in the mean energy of the plasma, and hence deducing
significant number of very hard collisions are artificially re- the rate of increase of electron temperature. Since the rate of
duced in strength. However, smaller cutoffs showed converB heating is relatively insensitive to the temperature of the
gence within the expected numercial errors, and hence wglasma, the small change in temperatWe, is accurately
conclude that the cutoff successfully stabilizes the numericgiven by AT,=RAt, whereR is the heating rate at the initial
without interfering with the physics we are trying to observe.plasma temperature, ankk is the interval over which the
The physical cutoff that very often appears in this contextheating is calculated.
namely the inner cutoff of the Coulomb logarithm, is unre-
lated to this numerical cutoff. We note that the inner cutoff of
the Coulomb logarithnb,,;, is related to the deBroglie wave- Since the number of particles used is not very large
length of the electron and/or the classical distance of closegil6 000 statistical fluctuations will still be observable. To
approach. The latter is innately incorporated in any MD cal-get an idea of the magnitude of these fluctuations, two dif-
culation. The former is not needed in a classical calculatiorferent initial distributions were equilibrated and tested
that treats electrons as well as ions as pointlike particlesagainst each other.
since the differential scattering cross sectéaryd() for the In addition, several calculations were done to test the nu-
two-particle collision is exactly the same for the unshieldedmerics of the code. They included changing the integration
classical two-body collision as for the exact quantum me+time step, changing the numerical inner cutoff and testing for
chanical calculatiof20]. Therefore, one could argue that energy conservation in the zero-field case. All these tests
any classical calculation that artificially introduces an innerwere successful. The combined numerical and statistical er-
cutoff related to the deBroglie wavelength should be treatedors were within a 5% range.
with caution. The code was then tested against calculations by earlier
authors, namely, Polishchuk and Meyer-ter-VéBhand Pert
[4]. These two were chosen because they combine between
Most important to every molecular dynamic calculation isthem a range of earlier approaches and contain comparable
the right choice of the initial distribution of particles over data.
velocity and position. This is slightly problematic since there  The formula derived by Polishchuk and Meyer-ter-Vehn
is no analytical solution for this distribution of electrons and[3] is

Results

Ill. CALCULATIONS

ions for moderately coupled plasmas. Even though the B2 2

o : o dT, 8nie"Zve
plasma density is homogenous on a large scale, it certainly is R=—= > 2 a3 INA (5)
not on a small scale. The well known effect of Debye shield- dt  3m(4mep) (v +ve)

ing for example, leads to local inhomogeneity, as describegiih
by the two-particle correlation function. These, and higher
order effects, will play a role in moderately coupled plasmas. |, - 1 N1+ ] + In{§+ exr(lx"ﬁ)] In{k]
The only way to create an initial distribution is to start the 4 3 1)
program with some initial distribution and then run the pro-
gram in the absence of any applied field to let it equilibrate.and
Of course one should choose the initial distribution as close mvé
to the final one as possible, to ensure a short equilibration &=
time.

For the calculations presented in this paper, this was done Here w is the frequency of the laser field, the ion den-
the following way. As a start, the ions were put into the boxsity in m™3, ve=|eE//mw the electron quiver velocityE
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2 FIG. 2. Comparison of the heating rd@ecalculated for a plasma
I(W/cm’) with initial valuesn,=10" cm 3, T,=10 eV by the formula of Pol-
ishchuk and Meyer-ter-Veh¢(dashed ling [Eq. (5)], the MD code
(starg, dividing the rates calculated in Fig. 1 by {diamond$. The
solid line shows the heating rate given by the analytic expression
suggested in Sec. V.

FIG. 1. Comparison of the heating rdecalculated for a plasma
with initial valuesng=10?° cm3, T,=10 eV by the formula of Pol-
ishchuk and Meyer-ter-Veh¢dashed ling[Eq. (5)], Pert(squarey
and the MD codéstarg. The solid line shows the heating rate given

by the analytic expression suggested in Sec. IV. .
y Y P 9 calculated by Polishchuk and Meyer-ter-Vehn and the equa-

=\2cu,l is the amplitude of the electric field, wherds the  tion suggested in Sec. IV are also shown.

intensity of the linearly polarized radiations=T,/m the It can be seen that the scgled rates are close to the dire'ctly
thermal speed, and is the ion charge number. In our case Calculated rates. The heating rates do appear to be just
7=1. slightly lower than in then,=10"-cm case, but the differ-

The first example plasma is the one chosen by Péran  ence is still inside the error and fluctuation range. This sug-
electron density of,=10?° cmi 3 and an initial temperature 9ests that a density of=10"" cm™® is low enough to neglect
of T,=10 eV. The plasma is heated by radiation of wave-multiple (>2) particle collisions.
length 1.06um, corresponding to the Nd:YAG laser transi-  TO determine at what density nonlinear effects become
tion. For this p|asmaNDebyez 5, a moderate|y Coup|ed Significant, the IB heating rate was calculated for two hlgh
plasma. density plasmas. Figure 3 shows calculated rates for an ini-

Figure 1 compares the rate of increase of electron temtial temperature ofT,=10 eV and density ofne=n;=5
peratureR calculated by the MD code with the calculations X 10?° cm™. For these conditionNpep,e~2.5. Since this
by Polishchuk and Meyer-ter-Vehn and those by Pert. coupling is so strong the simulation for Fig. 3 was run with

Itis clear that all three calculations give heating curves oftn even shorter time step at~6x 10"*' s. Figure 4 shows
the same form, and are in good quantitative agreement at lo#ie calculated heating rates for a plasma with initial tempera-
intensities. However, the calculated heating rates vary by &re T,=20 eV and density;=8x 10?2 cm™. In this case
factor of up to 2 in the regiogmuZ=T,. For a 10-eV  Npebye™3.5. _ _
plasma this corresponds to an intensity of<4.8 It can.be seen that the heating rgte decreases relative to
X 10' W/cn?. In detail, the heating rate derived by Pprp ~ the heatl_ng rate calculated. by Poh_shchqk and Meyer-ter-
is in good agreement with our calculation in the limit of high Vehn. This becomes especially obvious in the case where
intensity, but the peak heating rate occurs at higher intensii =8 10°° cm™® and the intensity is ¥8 W/cn?. Here the
ties than either that of Polishchuk and Meyer-ter-VEBhor MD heating rate is significantly less than the Polishchuk and
that of the MD calculation. The heating rate calculated byMeyer-ter-Vehn result. This is a sign of a contribution that is
Polishchuk and Meyer-ter-Vehn is lower than the rate calcu-
lated by our code for all intensities wigmuv2=T,. e ]

The difference between the two earlier calculatipdl 1
is largely due to a difference in the form of the term resem- I
bling the Coulomb logarithm. This also shows one of the
weaknesses of those methods; since this term cannot be de- I
rived from basic principles there is always a certain amount 04
of arbitrariness associated with it.

One of the key features of all earlier calculations is a
linear dependance of the heating rate on the plasma density.
However, if three-body collisiongor collisions with even
more particlesplay a significant role, there should be higher
order terms in the density. To investigate this, the heating  FIG. 3. Comparison of the heating ra&@ealculated for a plasma
of a 10-eV plasma with an electron density o@f  with initial valuesn;=5x 102 cm™3, T,=10 eV by the formula of
=10" cm™ was calculated. Figure 2 compares the heatingPolishchuk and Meyer-ter-Vehuashed ling[Eq. (5)] and the MD
rate calculated by the MD code for,=10'" cm™® with the  code (starg. The solid line shows the heating rate given by the
calculated rates shown in Fig. 1 divided by 10. The ratesnalytic expression suggested in Sec. IV.

R(eV/fs)

10" 10
K(W/em?)
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i ' X% ' plication, we suggest a modified version of the IB-heating
L2r ] formula from Polishchuk and Meyer-ter-Vef®j that fits the
I geuny . MD data.
Zosl . ] We chose to fit an analytical expression that resembles the
303— / \_\ 1 result of Polishchuk and Meyer-ter-Vehn:
[~ L .
04 , d T 8 e4 ZZU 2
L \_ =—== TR gpam) In A (6)
dt ~ 3m(4mep)X(v +v?)
102 10" e with
I(W/em®) N
|
FIG. 4. Comparison of the heating rdecalculated for a plasma a(m) = Clni<1 Cz) ™
with initial valuesn;=8x 107 cm™3, T,=20 eV by the formula of
Polishchuk and Meyer-ter-Vehidashed ling[Eqg. (5)] and the MD and
code (starg. The solid line shows the heating rate given by the 1 —
analytic expression suggested in Sec. IV. INA= In[C3§+ Cyé%+ Cse8 + exr<§\’7r/2>]
nonlinear in the plasma density. This point is discussed in Te
more detail in Sec. IV. X In[exp(l) * h }
The final plasma for which the heating rate was calculated
was one with an initial temperature ©§=5 eV and a density where
of n;=10 cm 3. This plasma is of interest, since most pre- mo2
vious derivations for IB heating rates are not valid for low &= T
temperatures. For example, the heating rate calculated by e
Polishchuk and Meyer-ter-Vehn is only valid fdi,>7%w. The rationale for the modifications to the expression de-
For the A=1.06um radiation considered herefiw  rived by Polishchuk and Meyer-ter-Vehn is as follows. In the
=1.16 eV, and so this condition is not met. expression for the Coulomb logarithm the termiTig fw]

Figure 5 compares the heating rate calculated for thisvas modified to Ifexp(1)+T./%w] to stablilize this term
plasma by the MD code with that calculated by the expreswhen T,=7%w. In the limit of low electron temperatures
sion due to Polishchuk and Meyer-ter-Vehn. It is clear thafth|s term now tends to unity_ The remaining termfiwere
the rate calculated by Polishchuk and Meyer-ter-Vehn Underthen rep|aced by a power series gnup to §3_ The term
estimates the heating rates in this case. This is largely due thg(d%\gm) was kept to ensure convergence of the two
factor in the final term of the Coulomb logarithm[T/%iw],  formulas in the low field limit where the results of the

which obviously breaks down for low temperatures. MD calculations are in good agreement with the formula
due to Polishchuk and Meyer-ter-Vehn. The effect of mul-
IV. DISCUSSION tiple particle collisions was accounted for by replacing the

. . .. linear dependance on density by a term of the farm;
After comparing earlier results to the MD calculation it _IC n (1_?] IC,) Ity by m)
=L il C2).

appears that two critical things are responsible for the differ- :
ences: the exact choice of the Coulomb logarithm, and the The_ cons'[_ants’:l,cz,cg,c4,c5 were then dete_rmlned by

o . o : numerically fitting the best curve to all the heating rates cal-
restriction to two-particle collisions. Since the MD calcula-

SO ; . culated by the MD code presented in Figs. 1-5.
tion is very slow, and therefore impractical for everyday ap- It was found that the best fit was achieved for

. . . C,=1.089,
0031 1
0025 1 C,=2.211X 107" m3,
& oot 1
= * _
Loas P— . C;=1.042,
oatf \\\_ 1
oousl \\\\_ C,=-0.233,
o o o C5=0.139.
KW/em®)

It should be noted that the constaiits and C; are both
FIG. 5. Comparison of the heating r&ecalculated for a plasma  Close to unity such that our suggested formula agrees closely
with initial valuesn,=10'° cm3, T,=5 eV by the formula of Pol- ~ With that of Polishchuk and Meyer-ter-Vehn in the limits of
ishchuk and Meyer-ter-Vehrdashed ling [Eq. (5)] and the MD  low intensity and low density.
code (stary. The solid line shows the heating rate given by the In order to demonstrate the non-linear dependance of the
analytic expression suggested in Sec. IV. heating rate on the plasma density, Fig. 6 shows the MD
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V. CONCLUSION

In summary, we have described a molecular dynamic code
for calculating the rate of inverse bremsstrahlung heating of
a plasma.

The results of calculations of the IB heating rate as a

function of laser intensity were presented for a range of

0 2a0®  5a0®  ea0®  8x10® plasma conditions. It was shown that the MD code is in
n,(cm™) qualitative agreement with ealier work, but differing in de-

tails by factors of up to 2 depending on the plasma condi-

FIG. 6. Values ofx(n;) deduced by dividing the MD heating rate tjions.
by the rate calculated by Eq6), but with a(n;) set to unity The results of the MD code suggest that the heating rate
(crossep These values may be compared with ). calculated  jhcreases lower than linearly for plasma densities greater
with C,— (Qashed ling and the fitted value ofC,=2.211  {han approximately % 102° cm 3,

X 107" m™® (solid line). Finally an analytic expression was fitted to the results of
heating rate divided by the right hand side of E6), but the MD calculgtions to yielq a formula for the heating rate
with a(ny) set to unity. This procedure yields deduced valueghat could be incorporated into larger plasma codes.

for a(n;) which can be compared to E() with and without

the nonlinear term. It is clear that(n;), and hence the heat-

ing rate, increases sublinearly with the plasma density. The ACKNOWLEDGMENTS
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